PYTHGORAS THEOREM

Pearson Edexcel - Tuesday 11 June 2019 - Paper 3 (Calculator) Higher Tier

1.

8	(a)	Mistake described	Cl	for statement describing a mistake Acceptable eg should be $AC^2 - AB^2$ she should do $8^2 - 6^2$ she should be subtracting not adding the numbers she thought that BC was the hypoteneuse when it was actually AC should be $BC^2 + AB^2 = AC^2$ should be $8^2 = 6^2 + BC^2$ Not acceptable eg she has not used Pythagoras correctly	
	(b)	Explanation	Cl	62+82 is 120 the answer should be $\sqrt{28}$ or 5 or 5.3 or 5.2915 $BC + AB = AC$ for explanation	Note that a diagram alone is insufficient.
				Acceptable examples the scale factor used is 2.5 5 ÷ 2 is not 1.5 10 ÷ 4 is more than 1.5 the scale factor is not 1.5 he has not used the correct scale factor has enlarged it by too much ZY should be 6 Not acceptable examples	· ·
				the grid is not large enough	

Pearson Edexcel - Thursday 25 May 2017 - Paper 1 (Non-Calculator) Higher Tier

2.

5	 70.5	P1	starts process of Pythagoras e.g. 5 ² + 12 ²
		P1	complete process for Pythagoras e.g. $\sqrt{5^2 + 12^2}$ or $\sqrt{25 + 144}$ or $\sqrt{169}$ (=13)
		P1	(dep P1 for Pythagoras) process of adding all the lengths e.g. 5 + 5 + 12 + 12 + "13" (=47)
		P1	(indep) process of multiplying at least 2 lengths by 1.5
		A1	cao SC: any evidence of working with Pythagoras award the P1 or P2

Pearson Edexcel - Specimen Papers Set 2 - Paper 1 (Non-Calculator) Higher Tier

3.

4	No with reasoning	M1 M1 A1 C1	Derive $AC=9$ cm and identify as hypotenuse $4^2 + 7^2$ for using eg $AC = \sqrt{4^2 + 7^2}$ or 65 and 81 for concluding explanation that ABC is not a right-angled triangle with evidence.
---	-------------------	----------------------	---

Pearson Edexcel - Friday 6 November 2015 - Paper 2 (Calculator) Higher Tier

*7			No not enough	5	M1 for substituting into Pythagoras' theorem M1 for complete correct use of Pythagoras' theorem M1 for a complete method to find the perimeter of their trapezium A1 51.(20655) C1 (dep on correct first 2 M marks) for correct conclusion dependent upon supporting calculations
----	--	--	---------------	---	---

Pearson Edexcel - Friday 8 November 2013 - Paper 2 (Calculator) Higher Tier

5.

15	80.1	3	M1 for $39^2 + 70^2$ M1 for $\sqrt{1521} + 4900$ or $\sqrt{6421}$ A1 for $80.1 - 80.2$

Pearson Edexcel - Friday 14 June 2013 - Paper 2 (Calculator) Higher Tier

6.

11		3.52	3	M1 for $1.35^2 + 3.25^2$ M1 (dep) for $\sqrt{(1.35^2 + 3.25^2)}$ (= $\sqrt{12.385}$) A1 for answer in the range 3.51 to 3.52
----	--	------	---	---

Pearson Edexcel - Monday 4 March 2013 - Paper 2 (Calculator) Higher Tier

7.

13	(a)	11.5	3	M1 for $13^2 - 6^2$ or $169 - 36$ or 133 M1 (dep on M1) for $\sqrt{"13^2 - 6^2"}$ or $\sqrt{133}$ A1 for answer in the range $11.5 - 11.6$
	(b)	47.2	3	M1 for $\cos(RPQ) = \frac{17}{25}$ oe OR $\sin PQR = \frac{17}{25}$ with PQR clearly identified M1 for $(RPQ = +) \cos^{-1} \frac{17}{25}$ oe OR $PQR = \sin^{-1} \frac{17}{25}$ with PQR clearly identified A1 for answer in the range $47.1 - 47.2$
				SC: B2 for an answer of 0.823(033) or 52.3(95) or 52.4

Pearson Edexcel - Friday 2 March 2012 - Paper 3 (Non-Calculator) Higher Tier

24 ((a)	$(a+1)^2 = a^2 + 2a + 1 \neq a^2 + 1$ OR Pick any non-zero value of a and show that LHS \neq RHS OR $(a+1)^2 = a^2 + 2a + 1$ Solves $a^2 + 2a + 1 = a^2 + 1$ to get $a = 0$ and indicates a contradiction	Correctly shown	2	M1 for $(a+1)^2 = a^2 + 2a + 1$ or $a^2 + a + a + 1$ (Expansion must be correct but may not be simplified) A1 for statement that $a^2 + 2a + 1 \neq a^2 + 1$ (eg. they are different) OR M1 for correct substitution of any integer into both expressions eg. $(2+1)^2$ and $2^2 + 1$ A1 for correct evaluation of both expressions and statement that they are not equal (eg. they are different)
((b)	$a^{2} + 2a + 1 + b^{2} + 2b + 1 = c^{2} + 2c + 1$ But $a^{2} + b^{2} = c^{2}$ So $2a + 2b + 1 = 2c$	AG	3	OR M1 $(a+1)^2 = a^2 + 2a + 1$ or $a^2 + a + a + 1$ A1 Solves $a^2 + 2a + 1 = a^2 + 1$ to get $a = 0$ and indicates a contradiction M1 use of Pythagoras in either triangle – one of $a^2 + b^2 = c^2$ or $(a+1)^2 + (b+1)^2 = (c+1)^2$ A1 $a^2 + 2a + 1 + b^2 + 2b + 1 = c^2 + 2c + 1$ and $a^2 + b^2 = c^2$
((c)	LHS is odd, RHS is even	Explanation	1	A1 $2a+2b+1=2c$ B1 eg. LHS is odd, RHS is even or one side is odd and the other side is even oe

Pearson Edexcel - Wednesday 9 November 2011 - Paper 3 (Non-Calculator) Higher Tier

9.

21	$6^2 - (2\sqrt{3})^2 = 36 - 12 = 24$	proof	5	M1 $6^2 - (2\sqrt{3})^2$ or $\sqrt{48}$ seen or $(2\sqrt{3})^2 + x^2 = 6^2$ oe
	Area = $\frac{1}{2} \times 2\sqrt{3} \times \sqrt{24} = \sqrt{72}$ = $\sqrt{36 \times 2} = 6\sqrt{2}$			A1 $\sqrt{24}$ oe M1(dep on M1) $\frac{1}{2} \times 2\sqrt{3} \times \sqrt[4]{24}$, A1 $\sqrt{72}$ oe A1 $6\sqrt{2}$ or $(k) = 6$

Pearson Edexcel - Tuesday 9 November 2010 - Paper 3 (Non-Calculator) Higher Tier

10.

22 ((a)		Reason	1	B1 for angle between a tangent and a radius is a right angle (or 90°)
((b)	$8^2 + 6^2$ $\sqrt{100}$ $10 - 6$	4	3	M1 for √(8² + 6²) A1 for 10 A1 cao

Pearson Edexcel - Monday 7 June 2010 - Paper 3 (Non-Calculator) Higher Tier

25	(a)	$x^{2} + (x+2)^{2} = (x+4)^{2}$ $x^{2} + x^{2} + 4x + 4 = x^{2} + 8x + 16$ $x^{2} + 4x - 8x + 4 - 16 = 0$	Proof	3	M1 for $x^2 + (x + 2)^2 = (x + 4)^2$ oe A1 for $x^2+x^2+4x+4 = x^2+8x+16$ A1 for completing the proof
	b)(i)	(x-6)(x+2)=0 x-6=0 or $x+2=0$ or	6, -2	4	M1 for $(x \pm 6)(x \pm 2) (= 0)$
		$x = \frac{4 \pm \sqrt{(-4)^2 - 4 \times 1 \times -12}}{2 \times 1}$ $x = \frac{4 \pm \sqrt{64}}{2}$			OR $\frac{4\pm\sqrt{(-4)^2-4\times1\times-12}}{2\times1}$ allow ±4 for b and ±12 for c
	(ii)	$(x-2)^2 - 16 = 0$ $x-2 = \pm 1/16$ $x = 2 \pm 1/16$	10		OR $(x-2)^2 - 16 = 0$ A1 $x = 6$ cao A1 $x = -2$ cao [SC: B1 for 1 correct solution if MO scored] B1 ft from (b)(i), provided x is a positive
					value [Note: an answer of 10 and 2 gets B0]

Pearson Edexcel - Tuesday 10 November 2009 - Paper 4 (Calculator) Higher Tier

12.

16	$14^2 + 12^2$	18.4	3	M1 for $14^2 + 12^2$
	$= 196 + 144 = 3$ $\sqrt{340} = 18.4$	40		M1 (dep) for $\sqrt{14^2 + 12^2}$ A1 for 18.4 to 18.44

OCR GSCE - Tuesday 6 November 2018 - Paper 4 (Calculator) Higher Tier

13.

3		an acceptable response e.g. it is not a right-angled triangle	1	Accept any correct response e.g. they should use the sine rule or cosine rule	

AQA GSCE - Thursday 8 June 2020 - Paper 3 (Calculator) Higher Tier

	32 ² and 60 ² or 1024 and 3600 or 4624	M1				
7	$\sqrt{32^2 + 60^2}$ or $\sqrt{1024 + 3600}$ or $\sqrt{4624}$	M1dep				
'	68	A1				
	Additional Guidance					
	Answer only 68			M1M1A1		
	$68 = 2\sqrt{17}$ incorrect further working	M1M1A0				
	68 from scale drawing			M0M0A0		
	68 from trigonometry			M0M0A0		

AQA GSCE – Tuesday 12 June 2018 – Paper 3 (Calculator) Higher Tier 15.

	$x^{2} + (7x)^{2} = (10y)^{2}$ or $x^{2} + 49x^{2} = 100y^{2}$	M1	oe		
	$50x^2 = 100y^2$ or 1.41()	A1	oe equation with terms collected eg $\frac{x^2}{y^2} = \frac{100}{50}$ or $x^2 = 2y^2$ or $x = 1.41y$		
20	$\sqrt{2}$ or $\frac{2}{\sqrt{2}}$	A1	Do not accept further working		
	Additional Guidance				
	$x^2 + 7x^2 = 10y^2$			M0	
	$\sqrt{2} = 1.41$			M1A1A0	
	$x^2 + (7x)^2 = (10y)^2$ $x^2 + 14x^2 = 20y^2$			M1	
	$x^2 + 14x^2 = 20y^2$			A0	

AQA GSCE – Thursday 8 June 2017 – Paper 2 (Calculator) Higher Tier

	Identifies error in working	B1	eg 2y² should be 4y² 2 should be 4 2 should be squared Should have worked out (2 worked out y²	2y) ² but has only
	Ad	ditional	Guidance	
	Answer may be seen next to Sami's me	ethod bel	ow the diagram	
	Adding brackets around 2y to Sami's v be blank)	vorking in	line 2 (working lines may	B1
	Showing the error being corrected			
	eg1 $(2y)^2 = 100$ and $2y = 10$			B1
	eg2 $4y^2 = 36 + 64$			B1
15(a)	She hasn't squared the bracket			B1
	Has only squared y			B1
	The brackets have been left out			B1
	$(2y)^2$ is not equal to $2y^2$			B1
	Should have square rooted 100 before the 2y should not have been taken out			B1
	Should have square rooted 100 before working from line 3 to line 4)	dividing	by 2 (could be referring to	В0
	Line 2 is wrong (has not identified which	h part of	line 2 is wrong)	В0
	Answer should be $y = 5$ (has not show	n what th	ne error is)	В0
	Ignore non-contradictory work if correct	t respons	e seen	

	No and valid reason		eg No and the hypotenuse is 10		
		B1	No and 2y is 10		
			No and if you double y it is more than 8		
	Additional Guidance				
	Valid reason must be for Mel's argument				
	Neither box ticked with valid reason can score B1 if decision in words				
	eg 2y is 10 so Mel is wrong			B1	
	No and she didn't double it to 10			B1	
1 E / L \	No and she didn't double y			В0	
15(b)	No and she has to double 5 which makes it 10			B1	
	No and she has to double 5			В0	
	No and the hypotenuse is 2y so that's more than 8			B1	
	No and the hypotenuse is 2y			B0	
	No and the hypotenuse is the longest	side		B0	
	No and y is 5			B0	
	No and if you double y it is more than 6 and 8			B1	
	No and if you double y it is more than 6	5		В0	
	Yes and valid reason			В0	